پیش‌بینی تعداد موارد بروسلوز براساس پارامترهای اقلیمی با استفاده از روش‌های داده کاوی شبکه‌های عصبی مصنوعی پرسپترون چند لایه، تابع پایه شعاعی و نزدیک‌ترین همسایگی

نویسندگان

  • تاپاک, لیلی استادیار، گروه آمار زیستی، دانشکده بهداشت و مرکز تحقیقات مدل‌سازی بیماری‌های غیر واگیر، دانشگاه علوم پزشکی همدان، همدان، ایران
  • حمیدی, امید مربی، گروه علوم پایه، دانشگاه صنعتی همدان، همدان، ایران
  • شیر محمدی خرم, نسرین کارشناس ارشد آمار زیستی، گروه آمار زیستی، دانشکده بهداشت، دانشگاه علوم پزشکی همدان، همدان، ایران
  • مریانجی, زهره استادیار، گروه جغرافیا، دانشگاه سیدجمال‌الدین اسدآبادی، همدان ،اسدآباد، ایران
چکیده مقاله:

Background and Objectives: Identification of statistical models has a great impact on early and accurate detection of outbreaks of infectious diseases and timely warning in health surveillance. This study evaluated and compared the performance of the three data mining techniques in time series prediction of brucellosis.   Methods: In this time series, the data of the human brucellosis cases and climatology parameters of Hamadan, west of Iran, were analyzed on a monthly basis from 2004 (March/April) to 2017 (February/March). The data were split into two subsets of train (80%) and test (20%). Three techniques, i.e. radial basis function (RBF) and multilayer perceptron (MLP) artificial neural network methods as well as K Nearest neighbor (KNN), were used in both subsets. The root mean square errors (RMSE), mean absolute errors (MAE), mean absolute relative errors (MARE), determination coefficient (R2) and intra-class correlation coefficient (ICC) were used for performance comparison.   Results: Results indicated that RMSE (23.79), MAE (20.65) and MARE (0.25) for MLP were smaller compared to the values of the other two models. The ICC (0.75) and R2 (0.61) values were also better for this model. Thus, the MLP model outperformed the other models in predicting the used data. The most important climatology variable was temperature.   Conclusion: MLP can be effectively applied to diagnose the behavior of brucellosis over time. Further research is necessary to detect the most suitable method for predicting the trend of this disease.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه عملکرد شبکه عصبی پرسپترون چند لایه و تابع پایه شعاعی در پیش‌بینی حجم صنعتی و هیزمی حاصل از درختان

سابقه و هدف: در مدیریت منابع جنگلی، فرآیندهای تصمیم‌گیری مثل عوامل کیفی در معادلات ریاضی وارد نمی‌شوند. درسال‌های اخیر شبکه‌های عصبی، کاربرد فراوانی در منابع جتگلی داشته‌اند. این تحقیق به مقایسه شبکه عصبی پرسپترون چندلایه و شبکه تابع پایه شعاعی در پیش‌بینی حجم صنعتی و هیزمی درختان پرداخته است. بررسی عملکرد شبکه‌های مختلف و یافتن بهترین نوع آن برای دستیابی به نتایج قابل قبول و معتبر از اهداف این...

متن کامل

پیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی

     Groundwater level prediction is an important issue in scheduling and managing water resources. A number of approaches such as stochastic, fuzzy networks and artificial neural network have been used for such prediction. A neural network model has been employed in this research for Shahrood plain groundwater level prediction. For this reason, statistical parameters of groundwater level fluct...

متن کامل

هیه نقشه کاربری اراضی شهر سبزوار با استفاده از روش‌های حداکثر احتمال و شبکه عصبی مصنوعی پرسپترون چند لایه

از جمله عوامل مهم در برنامه‌ریزی و مدیریت شهری، به ویژه در راستای نیل به توسعه‌ی پایدار در نواحی شهری و استفاده بهینه از سرزمین، اطلاع بهنگام از وضعیّت پوشش اراضی برای این مناطق است. داده‌های سنجش از دور به جهت ارائه‌ی اطلاعات به هنگام و رقومی، تنوع اشکال و امکان پردازش پتانسیل بالایی برای تهیه‌ی نقشه‌های به روز کاربری اراضی شهری دارند. در این تحقیق با استفاده از تصویر ماهواره‌ای Landsat/ETM+ و ...

متن کامل

تشخیص خودکار مدولاسیون با استفاده از برنامه نویسی ژنتیک و شبکه عصبی چند لایه پرسپترون

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. In this research we implemented our model by using appropria...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 14  شماره 2

صفحات  153- 165

تاریخ انتشار 2018-09

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023